Salient Object Detection using a Context-Aware Refinement Network

نویسندگان

  • Md Amirul Islam
  • Mahmoud Kalash
  • Mrigank Rochan
  • Yang Wang
چکیده

Recently there has been remarkable success in pushing the state of the art in salient object detection. Most of the improvements are driven by employing end-to-end deeper feed-forward networks. However, in many cases precisely detecting salient regions requires representation of fine details. Combining high-level and low-level features using skip connections is a strategy that has been proposed, but sometimes fails to select the right contextual features. To overcome this limitation, we propose an end-toend encoder-decoder network that employs recurrent refinement to generate a saliency map in a coarse-to-fine fashion by incorporating finer details in the detection framework. The proposed approach makes use of refinement units within each stage of the decoder that are responsible for refining the saliency map produced by earlier layers by learning context-aware features. Experimental results on several challenging saliency detection benchmarks validate the effectiveness of our proposed architecture providing a significant improvement over current state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depth-aware salient object detection using anisotropic center-surround difference

Most previous works on salient object detection concentrate on 2D images. In this paper, we propose to explore the power of depth cue for predicting salient regions. Our basic assumption is that a salient object tends to stand out from its surroundings in 3D space. To measure the object-to-surrounding contrast, we propose a novel depth feature which works on a single depth map. Besides, we inte...

متن کامل

Deeply Supervised 3D Recurrent FCN for Salient Object Detection in Videos

This paper presents a novel end-to-end 3D fully convolutional network for salient object detection in videos. The proposed network uses 3D filters in the spatiotemporal domain to directly learn both spatial and temporal information to have 3D deep features, and transfers the 3D deep features to pixel-level saliency prediction, outputting saliency voxels. In our network, we combine the refinemen...

متن کامل

Context-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network

Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...

متن کامل

Revisiting Salient Object Detection: Simultaneous Detection, Ranking, and Subitizing of Multiple Salient Objects

Salient object detection is a problem that has been considered in detail and many solutions proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than ot...

متن کامل

Self-explanatory Deep Salient Object Detection

Salient object detection has seen remarkable progress driven by deep learning techniques. However, most of deep learning based salient object detection methods are black-box in nature and lacking in interpretability. This paper proposes the first self-explanatory saliency detection network that explicitly exploits lowand high-level features for salient object detection. We demonstrate that such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017